import librosa import numpy as np import argparse from scipy.signal import savgol_filter import torch from model import EmoTalk import random import os, subprocess import shlex @torch.no_grad() def test(args): result_path = args.result_path os.makedirs(result_path, exist_ok=True) eye1 = np.array([0.36537236, 0.950235724, 0.95593375, 0.916715622, 0.367256105, 0.119113259, 0.025357503]) eye2 = np.array([0.234776169, 0.909951985, 0.944758058, 0.777862132, 0.191071674, 0.235437036, 0.089163929]) eye3 = np.array([0.870040774, 0.949833691, 0.949418545, 0.695911646, 0.191071674, 0.072576277, 0.007108896]) eye4 = np.array([0.000307991, 0.556701422, 0.952656746, 0.942345619, 0.425857186, 0.148335218, 0.017659493]) model = EmoTalk(args) model.load_state_dict(torch.load(args.model_path, map_location=torch.device(args.device)), strict=False) model = model.to(args.device) model.eval() wav_path = args.wav_path file_name = wav_path.split('/')[-1].split('.')[0] speech_array, sampling_rate = librosa.load(os.path.join(wav_path), sr=16000) audio = torch.FloatTensor(speech_array).unsqueeze(0).to(args.device) level = torch.tensor([1]).to(args.device) person = torch.tensor([0]).to(args.device) prediction = model.predict(audio, level, person) prediction = prediction.squeeze().detach().cpu().numpy() if args.post_processing: output = np.zeros((prediction.shape[0], prediction.shape[1])) for i in range(prediction.shape[1]): output[:, i] = savgol_filter(prediction[:, i], 5, 2) output[:, 8] = 0 output[:, 9] = 0 i = random.randint(0, 60) while i < output.shape[0] - 7: eye_num = random.randint(1, 4) if eye_num == 1: output[i:i + 7, 8] = eye1 output[i:i + 7, 9] = eye1 elif eye_num == 2: output[i:i + 7, 8] = eye2 output[i:i + 7, 9] = eye2 elif eye_num == 3: output[i:i + 7, 8] = eye3 output[i:i + 7, 9] = eye3 else: output[i:i + 7, 8] = eye4 output[i:i + 7, 9] = eye4 time1 = random.randint(60, 180) i = i + time1 np.save(os.path.join(result_path, "{}.npy".format(file_name)), output) # with postprocessing (smoothing and blinking) else: np.save(os.path.join(result_path, "{}.npy".format(file_name)), prediction) # without post-processing def render_video(args): wav_name = args.wav_path.split('/')[-1].split('.')[0] image_path = os.path.join(args.result_path, wav_name) os.makedirs(image_path, exist_ok=True) image_temp = image_path + "/%d.png" output_path = os.path.join(args.result_path, wav_name + ".mp4") blender_path = args.blender_path python_path = "./render.py" blend_path = "./render.blend" cmd = '{} -t 64 -b {} -P {} -- "{}" "{}" '.format(blender_path, blend_path, python_path, args.result_path, wav_name) cmd = shlex.split(cmd) p = subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while p.poll() is None: line = p.stdout.readline() line = line.strip() if line: print('[{}]'.format(line)) if p.returncode == 0: print('Subprogram success') else: print('Subprogram failed') cmd = 'ffmpeg -r 30 -i "{}" -i "{}" -pix_fmt yuv420p -s 512x768 "{}" -y'.format(image_temp, args.wav_path, output_path) subprocess.call(cmd, shell=True) cmd = 'rm -rf "{}"'.format(image_path) subprocess.call(cmd, shell=True) def main(): parser = argparse.ArgumentParser( description='EmoTalk: Speech-driven Emotional Disentanglement for 3D Face Animation') parser.add_argument("--wav_path", type=str, default="./audio/angry1.wav", help='path of the test data') parser.add_argument("--bs_dim", type=int, default=52, help='number of blendshapes:52') parser.add_argument("--feature_dim", type=int, default=832, help='number of feature dim') parser.add_argument("--period", type=int, default=30, help='number of period') parser.add_argument("--device", type=str, default="cuda", help='device') parser.add_argument("--model_path", type=str, default="./pretrain_model/EmoTalk.pth", help='path of the trained models') parser.add_argument("--result_path", type=str, default="./result/", help='path of the result') parser.add_argument("--max_seq_len", type=int, default=5000, help='max sequence length') parser.add_argument("--num_workers", type=int, default=0) parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--post_processing", type=bool, default=True, help='whether to use post processing') parser.add_argument("--blender_path", type=str, default="./blender/blender", help='path of blender') args = parser.parse_args() test(args) render_video(args) if __name__ == "__main__": main()